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Abstract. Automatic nuclei detection and classification can produce
effective information for disease diagnosis. Most existing methods classify
nuclei independently or do not make full use of the semantic similarity
betweennuclei andtheirgrouping features. In thispaper,weproposeanovel
end-to-end nuclei detection and classification framework based on a group-
ing transformer-based classifier.Thenuclei classifier learns andupdates the
representations of nuclei groups and categories via hierarchically grouping
the nucleus embeddings. Then the cell types are predicted with the pair-
wise correlationsbetween categorical embeddings andnucleus features.For
the efficiency of the fully transformer-based framework,we take the nucleus
group embeddings as the input prompts of backbone, which helps harvest
grouping guided features by tuning only the prompts instead of the whole
backbone. Experimental results show that the proposed method signifi-
cantly outperforms the existing models on three datasets.

Keywords: Nuclei classification · Prompt tuning · Clustering ·
Transformer

1 Introduction

Nucleus classification is to identify the cell types from digital pathology image,
assisting pathologists in cancer diagnosis and prognosis [3,30]. For example, the
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involvement of tumor-infiltrating lymphocytes (TILs) is a critical prognostic
variable for the evaluation of breast/lung cancer [4,29]. It is a challenge to infer
the nucleus types due to the diversity and unbalanced distribution of nuclei.
Thus, we aim to automatically classify cell nuclei in pathological images.

A number of methods [7,10,14,23–25,33,34] have been proposed for auto-
matic nuclei segmentation and classification. Most of them use a U-shape
model [28] for training to produce dense predictions with expensive pixel-level
labels. In this paper, we aim to obtain the location and category of cells, which
only needs affordable labels of centroids or bounding boxes. The task can be
solved by generic object detector [17,26,27], but they are usually built for every-
day objects whose positions and combinations are quite random. Differently, in
pathological images, experts often identify nuclear communities via their rela-
tionships and spatial distribution. Some recent methods resort to the spatial
contexts among nuclei. Abousamra et al. [1] adopt a spatial statistical function
to model the local density of cells. Hassan et al. [11] build a location-based
graph for nuclei classification. However, the semantics similarity and dissimilar-
ity between nucleus instances as well as the category representations have not
been fully exploited.

Based on these observations, we develop a learnable Grouping Transformer
based Classifier (GTC) that leverages the similarity between nuclei and their clus-
ter representations to infer their types. Specifically, we define a number of nucleus
clusters with learnable initial embeddings, and assign nucleus instances to their
most correlated clusters by computing the correlations between clusters andnuclei.
Next, the cluster embeddings are updated with their affiliated instances, and are
further grouped into the categorical representations. Then, the cell types can be
well estimated using the correlations between the nuclei and the categorical embed-
dings. We propose a novel fully transformer-based framework for nuclei detec-
tion and classification, by integrating a backbone, a centroid detector, and the
grouping-based classifier. However, the transformer framework has a relatively
large number of parameters, which could cause high costs in fine-tuning the whole
model on large datasets. On the other hand, there exist domain gaps in the patho-
logical images of different organs, staining, and institutions, which makes it nec-
essary to fine-tune models to new applications. Thus, it is of great significance to
tune our proposed transformer framework efficiently.

Inspired by the prompt tuning methods [13,16,20] which train continuous
prompts with frozen pretrained models for natural language processing tasks,
we propose a grouping prompt based learning strategy for efficient tuning. We
prepend the embeddings of nucleus clusters to the input space and freeze the
entire pre-trained transformer backbone so that these group embeddings act
as prompt information to help the backbone extract grouping-aware features.
Our contributions are: (1) a prompt-based grouping transformer framework for
end-to-end detection and classification of nuclei; (2) a novel grouping prompt
learning mechanism that exploits nucleus clusters to guide feature learning with
low tuning costs; (3) Experimental results show that our method achieves the
state-of-the-art on three public benchmarks.
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Fig. 1. The architecture of Prompt-based Grouping Transformer.

2 Methodology

As shown in Fig. 1, We propose a novel framework, Prompt-based Grouping
Transformer (PGT), which directly outputs the coordinates of nuclei centroids
and leverages grouping prompts for cell-type prediction. In the architecture, the
detection and classification parts are interdependent and can be trained together.
The proposed framework consists of a transformer-based nucleus detector, a
grouping transformer-based classifier, and a grouping prompt learning strategy,
which are presented in the following.

2.1 Transformer-Based Centroid Detector

Backbone. We adopt Swin Transformer [21] as the backbone to learn deep
features. The pixel-level feature maps output from Stage 2 to Stage 4 of the
backbone are extracted. Then the Stage-4 feature map is downsampled with a
3 × 3 convolution of stride 2 to yield another lower-resolution feature map. We
obtain four feature maps in total. The channel number of each feature map is
aligned via a 1 × 1 convolution layer and a group normalization operator.

Encoder and Decoder. The encoder and decoder have 3 deformable attention
layers [35], respectively. The multi-scale feature maps output by the backbone
are fed into the encoder in which the pixel-level feature vectors in all these feature
maps are updated via deformable self-attention. After the attention layers, we
send each feature vector into 2 fully connected (FC) layers separately to obtain
the fine-grained categorical scores of each pixel. Only the Q feature vectors with
the highest confidence are preserved as object embeddings and their position
coordinates are recorded as reference points. Each decoder layer utilizes cross-
attention to enhance the object embeddings by taking them as queries/values
and the updated feature maps as keys. The enhanced query embeddings are fed
into 2 FC layers to regress position offsets which are added to and refine the
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Fig. 2. The Grouping Transformer based Classifier.

reference points. The reference points output by the last decoder layer are the
finally detected nucleus centroids. The last query embeddings from the decoder
are sent to the proposed classifier for cell type prediction.

2.2 Grouping Transformer Based Classifier

In Fig. 2, we develop a Grouping Transformer based Classifier (GTC) that takes
grouping prompts g ∈ R

G×D and query embeddings q ∈ R
Q×D as inputs, and

yields categorical scores for each nucleus query. To divide the queries into primary
groups, The similarity matrix S ∈ R

G×Q between the query embeddings and the
grouping prompts is built via inner product and Gumbel-Softmax [12] operation
as Eq. (1):

S = softmax(W 1
q g · (W 1

k q)T + γ/τ), (1)

where W 1
q and W 1

k are the weights of learnable linear projections, γ ∈ R
G×Q are

i.i.d random samples drawn from the distribution Gumbel(0, 1) and τ denotes
the Softmax temperature. Then we utilize the hard assignment strategy [31,32]
and assign the query embedding to different groups as Eq. (2):

Ŝ = one-hot(argmax(S)) + S − sg(S), (2)

where argmax(S) returns a 1×Q vector, and one-hot(·) converts the vector to a
binary G × Q matrix. sg is the stop gradient operator for better training of the
one-hot function [31,32]. Then we merge the embeddings belonging to the same
group into a primary group via Eq. (3):

gp = g + W 1
o

Ŝ · W 1
v q

∑G
i=1 Ŝi

(3)

where gp denotes the embeddings of primary groups, W 1
v and W 1

o are learn-
able linear weights. To separate the primary groups into the cell categories, we
measure the similar matrix between the primary groups gp and learnable class
embeddings ce ∈ R

C×D to yield advanced class embeddings ca ∈ R
C×D, in

the same way as Eq.(1)–(3). To classify each centroid query, we measure the
similarity between each query embedding and the advanced class embeddings.
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Fig. 3. The inputs with grouping prompts of the Shift-Window transformer backbone.

The category whose advanced embedding is most similar to a query, is assigned
to the centroid query. The classification results c ∈ R

C×Q are computed as:
c = ca · qT .

2.3 Loss Function

Theproposedmethod outputs a set of centroid proposals {(xq, yq)|q ∈ {1, · · · , Q}}
with a decoder layer, and their corresponding cell-type scores {cq|q ∈ {1, · · · , Q}}
withourproposed classifier.To compute the losswithdetected centroids,weuse the
Hungarian algorithm [15] to assign K target centroids (ground truth) to proposal
centroids and get P positive (matched) samples and Q − P negative (unmatched)
samples. The overall loss is defined as Eq. (4):

L(y, ŷ) =
1
P

P∑

i=1

(
ω1||(xi, yi) − (x̂i, ŷi)||22 + ω2FL(ci, ĉi)

)
+ ω3

Q∑

j=P+1

FL(cj , ĉj),

(4)
where ω1, ω2, ω3 are weight terms, (xi, yi) is the ith matched centroid coordi-
nates, (x̂i, ŷi) is the target coordinates. ci and cj denote the categorical scores of
matched and unmatched samples, respectively. As the target of unmatched sam-
ples, ĉj is set to an empty category. FL(·) is the Focal Loss [18] for training the
proposed classifier. We adopt the deep supervision strategy [35]. In the training,
each decoder layer produces the side outputs of centroids and query embeddings
that are fed into a GTC for classifying nuclei. For the 3 decoder layers, they
yield 3 sets of detection and classification results for the loss in Eq. (4).

2.4 Grouping Prompts Based Tuning

To avoid the inefficient fine-tuning of the backbone, we propose a new and simple
learning strategy based on grouping prompts, as shown in Fig. 1. We inject a set
of prompt embeddings as extra input of the Swin-Transformer [21], and only tune
the prompts instead of the backbone. To learn group-aware representations, we
further propose to share the embeddings of prompts with those of initial groups
in the proposed GTC. Such prompt embeddings are define as Grouping Prompts.

For a typical Swin-Transformer backbone, an input pathological image I ∈
R

H×W×3 is divided into HW
E2 image patches of size E × E. We first embed each
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image patch into a D-dimensional latent space via a linear projection. Then we
randomly initialize the grouping prompts g ∈ R

G×D as learnable parameters,
and concatenate them with the patch embeddings as input. Note that in the
backbone, input patch embeddings are separated into different local windows
and the grouping prompts are also inserted into each window, as shown in Fig. 3.
Our proposed grouping prompt based learning consists of two phases, pre-tuning
and prompt-tuning. In the pre-tuning phase, we adopt the Swin-b backbone
pre-trained on ImageNet, replace the GTC head in our model (Fig. 1) with 2
FC layers, and train the overall framework without prompts and GTC. In the
prompt-tuning phase, grouping prompts are added to the input of the backbone
and GTC, while the backbone parameters are frozen.

3 Experiments and Results

3.1 Datasets and Implementation Details

CoNSeP1 [10] is a colorectal nuclear dataset with three types, consisting
of 41H&E stained image tiles from 16 colorectal adenocarcinoma whole-slide
images (WSIs). The WSIs are at 20× magnification and the size of the slides is
500 × 500. We split them following the official partition [1,10].

BRCA-M2C2 [1] is a breast cancer dataset with three types and consists of
120 image tiles from 113 patients. The WSIs are at 20× magnification and the
size of the slides ranges from 465 × 465 to 504 × 504. We follow the work [1] to
apply the SLIC [2] algorithm to generate superpixels as instances and split them
into 80/10/30 slides for training/validation/testing.

Lizard3 [9] has 291 histology images of colon tissue from six datasets, containing
nearly half a million labeled nuclei in H&E stained colon tissue. The WSIs are
at 20× magnification with an average size of 1,016 × 917 pixels.

Our implementation and the setting of hyper-parameters are based on
MMDetection [5]. The number of grouping prompts G is 64. Random crop,
flipping, and scaling are used for data augmentation. Our method is trained
with PyTorch on a 48 GB GPU (NVIDIA A100) for 12–24 h (depending on the
dataset size). More details are listed in the supplementary material.

3.2 Comparison with the State-of-the-Art

The proposed method is compared with the state-of-the-art models: the exist-
ing methods for detecting and classifying cells in pathological images, i.e., Hover-
Net [10], MCSpatNet [1], SONNET [7], and the sate-of-the-art methods for object
detection in natural images, i.e., DDOD [6], TOOD [8], DAB-DETR [19] and Uper-
Net with ConvNeXt backbone [22]. As shown in Table 1, our method exceeds all

1 https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet/.
2 https://github.com/TopoXLab/Dataset-BRCA-M2C/.
3 https://warwick.ac.uk/fac/cross_fac/tia/data/lizard/.

https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet/
https://github.com/TopoXLab/Dataset-BRCA-M2C/
https://warwick.ac.uk/fac/cross_fac/tia/data/lizard/
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Table 1. Comparison with existing methods on CoNSeP, BRCA-M2C and Lizard.
For each dataset, we report the F-score of each class (F k

c ), the mean F-score over
all classes (Fc) and the detection F-score (Fd). F Infl.

c , FEpi.
c , FStro.

c , FNeu.
c , FLym.

c ,
FPla.
c , FEos.

c and FCon.
c denote the F-score for the inflammatory, epithelial, stromal,

neutrophils, lymphocytes, plasma, Eosinophil and connective tissue cells, respectively.
For each row, the best result is in bold and the second best is underlined.

F-score↑ Hovernet
[10]

DDOD
[6]

TOOD
[8]

MCSpatNet
[1]

SONNET
[7]

DAB-
DETR
[19]

ConvNeXt
[22]

(Ours)

2019 2021 2021 2021 2022 2022 2022 -

CoNSeP F Infl.
c 0.514 0.516 0.622 0.583 0.563 0.531 0.618 0.623

FEpi.
c 0.604 0.436 0.616 0.608 0.502 0.440 0.625 0.639

FStro.
c 0.391 0.429 0.382 0.527 0.366 0.443 0.542 0.577

Fc 0.503 0.494 0.540 0.573 0.477 0.471 0.595 0.613
Fd 0.621 0.554 0.608 0.722 0.590 0.619 0.715 0.738

BRCA-M2C F Infl.
c 0.454 0.394 0.400 0.424 0.343 0.437 0.423 0.473

FEpi.
c 0.577 0.544 0.559 0.627 0.411 0.634 0.636 0.686

FStro.
c 0.339 0.373 0.315 0.387 0.281 0.380 0.353 0.409

Fc 0.457 0.437 0.425 0.479 0.345 0.484 0.471 0.523
Fd 0.74 0.659 0.662 0.794 0.653 0.705 0.785 0.799

Lizard FNeu.
c 0.210 0.025 0.029 0.105 0.09 0.142 0.205 0.301

FEpi.
c 0.665 0.584 0.615 0.601 0.599 0.653 0.714 0.762

FLym.
c 0.472 0.342 0.404 0.457 0.538 0.544 0.611 0.664

FPla.
c 0.376 0.130 0.152 0.228 0.370 0.356 0.333 0.403

FEos.
c 0.367 0.124 0.157 0.220 0.365 0.295 0.403 0.457

FCon.
c 0.492 0.347 0.383 0.484 0.143 0.559 0.578 0.644

Fc 0.430 0.259 0.290 0.349 0.351 0.425 0.474 0.538
Fd 0.729 0.561 0.606 0.713 0.682 0.656 0.764 0.779

the other methods on three benchmarks with both detection and classification
metrics. Specifically, on the CoNSeP dataset, our approach achieves 1.6% higher
F-score on the detection (Fd) and 1.8% higher F-score on the classification (Fc)
than the second best methods MCSpatNet [1] and UperNet [22]. On BRCA-M2C
dataset, ourmethodhas 0.5%higherFd and3.9%higherFc, comparedwith the sec-
ond best models MCSpatNet [1] and DAB-DETR [19]. Besides, on Lizard dataset,
our method outperforms UperNet [22] by more than 1.5% and 6.4% on Fd and
Fc, respectively. Meanwhile, we conduct t-test on CoNSeP dataset for statistical
significance test. The details are listed in the supplementary material. The visual
comparisons are shown in Fig. 4. With the context information from surrounding
nuclei, our method effectively reduces the misclassification rate of the lymphocytes
and neutrophil categories (Blue and Red).

3.3 Ablation Analysis

The strengths of the grouping transformer based classifier and the
grouping prompts are verified on CoNSeP dataset, as shown in Table 2.
Prompt-based Grouping Transformer (PGT) is our proposed detection and clas-
sification architecture with grouping prompts and the GTC (in Fig. 1), while the
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Fig. 4. The visualization results on CoNSeP dataset. (Color figure online)

Table 2. Ablation study on CoNSeP. PGT is the overall detection-classification frame-
work. PT denotes training the network with Prompt Tuning. GTC means using the
Grouping Transformer-based Classifier. * means freezing the weights of the backbone.

Methods F Infl.
c FEpi.

c FStro.
c Fc Fd Tuned Params (M)

PGT (Full) 0.631 0.641 0.572 0.615 0.735 102.2
w/o GTC & PT (Baseline) 0.599 0.600 0.570 0.590 0.714 95.767
w/o PT* 0.602 0.604 0.558 0.588 0.713 15.321
w/o GTC* 0.615 0.604 0.564 0.594 0.724 8.895
w/ detached GTC & PT* 0.577 0.623 0.545 0.582 0.714 15.429
PGT* (Ours) 0.623 0.639 0.577 0.613 0.738 15.379

‘Baseline’ has no these two settings. PT means using naive prompt tuning. GTC
means classifying nuclei with the grouping transformer. Our method achieves
comparable results to the fully fine-tuning PGT with tuning only 15% param-
eters. Compared to the Baseline, our method yields 2.4% higher Fd and 2.3%
higher Fc, respectively, which shows the effective combination of the grouping
classifier and prompts. ‘detached GTC & PT’ means that group features and
prompts are independent. Our method surpasses the detached setting by 2.4%
in Fd and 3.1% in Fc, which suggests that sharing embeddings of groups and
prompts is effective. With a frozen backbone, the performances of ‘w/o PT’ and
‘w/o GTC’ are both dropping, which verifies the strength of the prompt tuning
and the GTC module, respectively.

Table 3 shows the effect of different numbers of grouping prompts on
CoNSeP dataset. When the number of groups is small, the classification result
is inferior. When the group number is large than 64, the groups may contain too
few nuclei to capture their common patterns. It is suggested to set the group
number to a moderate value such as 64.



Prompt-Based Grouping Transformer 577

Table 3. The effects of the number of grouping prompts G on CoNSeP.

F-score↑ 8 16 32 64 128

Fd 0.727 0.724 0.726 0.738 0.723
Fc 0.600 0.599 0.604 0.613 0.583

Table 4. Fd denotes the mean of detection F-scores of all testing images. * means
p-value ≤0.05. ** means p-value ≤0.01.

F-score↑ Hovernet
[10]

DDOD
[6]

TOOD
[8]

MCSpatNet
[1]

SONNET
[7]

DAT-DETR
[19]

ConvNeXt
-UperNet
[22]

PGT*
(Ours)

Fd 0.615 0.545 0.625 0.706 0.582 0.615 0.698 0.728
p-value 0.001* 0.000** 0.000* 0.027* 0.000** 0.000* 0.012* –

The Statistical Tests. As shown in Table 4, We calculate Fd of each testing
image as sample data and conduct t-test to obtain p-values on the CoNSeP
dataset. The p-values are computed between our method and the others.

4 Conclusion

We propose a new prompt-based grouping transformer framework that is fully
transformer-based, and can achieve end-to-end nuclei detection and classifica-
tion. In our framework, a grouping-based classifier groups nucleus features into
cluster and category embeddings whose correlations with nuclei are used for
identifying cell types. We further propose a novel learning scheme, which shares
group embeddings with prompt tokens and extracts features guided by nuclei
groups with less tuning costs. The results not only suggest that our method can
obtain competitive performance on nuclei classification, but also indicate that
the proposed prompt learning strategy can enhance the tuning efficiency.
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